ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach
نویسندگان
چکیده
BACKGROUND In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects which disturb the ECG signal. Image synchronization is thus less reliable and yields artefacts in CMR images. METHODS A strategy based on Independent Component Analysis (ICA) was pursued in this work to enhance the ECG contribution and attenuate the MHD effect. ICA was applied to 12-lead ECG signals recorded inside a 7 T MR scanner. An automatic source identification procedure was proposed to identify an independent component (IC) dominated by the ECG signal. The identified IC was then used for detecting the R-peaks. The presented ICA-based method was compared to other R-peak detection methods using 1) the raw ECG signal, 2) the raw vectorcardiogram (VCG), 3) the state-of-the-art gating technique based on the VCG, 4) an updated version of the VCG-based approach and 5) the ICA of the VCG. RESULTS ECG signals from eight volunteers were recorded inside the MR scanner. Recordings with an overall length of 87 min accounting for 5457 QRS complexes were available for the analysis. The records were divided into a training and a test dataset. In terms of R-peak detection within the test dataset, the proposed ICA-based algorithm achieved a detection performance with an average sensitivity (Se) of 99.2%, a positive predictive value (+P) of 99.1%, with an average trigger delay and jitter of 5.8 ms and 5.0 ms, respectively. Long term stability of the demixing matrix was shown based on two measurements of the same subject, each being separated by one year, whereas an averaged detection performance of Se = 99.4% and +P = 99.7% was achieved.Compared to the state-of-the-art VCG-based gating technique at 7 T, the proposed method increased the sensitivity and positive predictive value within the test dataset by 27.1% and 42.7%, respectively. CONCLUSIONS The presented ICA-based method allows the estimation and identification of an IC dominated by the ECG signal. R-peak detection based on this IC outperforms the state-of-the-art VCG-based technique in a 7 T MR scanner environment.
منابع مشابه
Improved ECG based gating in ultra high field cardiac MRI using an independent component analysis approach
Background Cardiac gating in ultra high field (UHF) MRI is a challenging task due to the magnetohydrodynamic (MHD) effect [1]. The MHD effect is particularly severe at such field strengths and severely distorts the electrocardiogram (ECG). State-of-the-art ECG based gating methods which use the vectorcardiogram (VCG) [2] are thus prone to errors [1]. This work presents an approach which separat...
متن کاملLimitations of VCG based gating methods in ultra high field cardiac MRI
Background The electrocardiogram (ECG) is important for gating purposes in cardiac magnetic resonance imaging (CMR). However, the magnetohydrodynamic (MHD) effect, which is caused by the flow of blood in the static magnetic field, makes it difficult to record clean ECG signals for gating. The vectorcardiogram (VCG), which can be derived from the ECG signal, is commonly used for gating purposes ...
متن کاملUltra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics
The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could s...
متن کاملSelf-gated cardiac magnetic resonance perfusion imaging compared with X-ray angiography: a pilot study
Background Cardiovascular Magnetic Resonance (CMR) stress perfusion is an effective noninvasive diagnostic clinical tool when combined with late gadolinium enhancement imaging (LGE) for evaluation of ischemia, infarct, and cardiac prognosis. Good ECG-gating is essential to the commonly used perfusion sequences, but ECG-gating is problematic in obese patients, high field magnetic fields, and pat...
متن کاملCardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging
BACKGROUND Time resolved 4D phase contrast (PC) cardiovascular magnetic resonance (CMR) in mice is challenging due to long scan times, small animal ECG-gating and the rapid blood flow and cardiac motion of small rodents. To overcome several of these technical challenges we implemented a retrospectively self-gated 4D PC radial ultra-short echo-time (UTE) acquisition scheme and assessed its perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2013